

Integrated Approaches to Sustainable Sediment Management *The Paradox of Having it All*

Eric A. Stern¹ and Eugene Peck²

Battelle Memorial Institute - Montclair, New Jersey USA¹
Viridian Alliance - New Haven, Connecticut USA²

Ath Joint Nordic Meeting on Remediation of Contaminated Sites 18-21 September 2012 – Oslo, Norway

Global Sediment Management Challenges

- Changes in Ocean Placement Criteria
- CDFs/CADs are nearing capacity
 - Difficulty siting / re-siting (including public opposition)
 - Loss of benthic habitat / mitigation Natural Resource Damage Assessment
 - Long-term liability
 - Costs not including climate change adaptation / long-term monitoring
- Dredge Dewater Haul (> distances) Landfill
 - Cost prohibitive
 - Paradox to Green Remediation / Sustainability
 - Long-term liability
- Integrating hybrid solutions

Competing regulatory programs

- Protective of human and ecological health
- Use in multi-environments (ocean, estuarine, lakes, fjords, urban)
- Socially and politically acceptable
 - Stakeholder buy-in
- Education and public outreach
- No re-contamination (source control)
- Compliance and reduced liability
- Sustainability and restoration is a part of the outcome
- Long-term monitoring consideration of the remedy?
- Complete project before I'm 90
- Component of a Regional Sediment Management Program
 - Transferable to other Norwegian harbors and Ports
- Least cost / economically efficient (public, gov't, businesses)
- ■Who Pays?

What is the desired outcome in a perfect sediment world?

Afghanistan Stability / COIN Dynamics

= Significant Delay

Application to Sediment Management (over the years)

WORKING DRAFT - V3

Programs in United States that Addresses Sediments:

- US Commission on Ocean Policy
- (USACE/USEPA) Regional Sediment Management Policy
- > USACE Dredged Material Navigation
 - HTRW / Sec. 312b environmental dredging (USACE)
- USEPA Superfund
 - Aquatic brownfields (weak link / economic development)-
 - Urban Rivers Restoration Initiative (old) sediments [YES]
 - -≻Urban Waters (new) sediments [*NO*]
- Water Programs (USEPA)
 - Stormwater, CSOs, TMDLs source control
 - National Estuary Program
 - Dredged Material
- RCRA / Solid Waste
- Enforcement Programs
- US Geological Survey
- US Department of Agriculture

Having the Heretical Debate Sediment Management

- Rethinking Risk Assessment / Policy
- Sustainable Approaches
 - Design (early decision making)
 - Socio-economic-political-structural (defining risk)
 - Beneficial use
- Life Cycle MCDA Analysis
- Technology (driver)
 - Innovation
- Cost-Share Models

Policy-makers will have to face up to making some hard choices and perhaps accepting slightly lower levels of perceived protection to the public – I.Waters

Contaminated Land Bulletin - July 2010

Why do we care?

- Complicated media and environmental management of the system [watershed] + Source Control
 - Innovation / Integration hybrid approaches
- What is different?
 - Costs for remediation can be prohibitive
 - ☐ Timelines to remediation can be years/decades
 - □Green Remediation/Sustainability
 - ■Sustainable Sediment Management
 - □Climate Change Adaptation
 - □ Regional Sediment Management
 - ✓ Who Pays? / long-term liability

- Need to balance remedial project cost with:
 - risk/environmental protection
 - liability
 - sustainability (green remediation?)
 - regulatory and public/political challenges
 - depth (maturity) of technology development, and
 - long-term management of the system
 - Innovation
- Can you have it all?
 - I don't think so....well maybe..... not really sure....
 - There is no one paradigm / process / technology....
 - Integrated approaches to sediment management
 - Regional Systems Approach transferable ?

Sediment Management Decision Making: Simple

Sediment Containment/Disposal Sites

Passaic River, NJ Proposed Cleanup Phase 1 Public Meeting – 2 Dec. 2008

This stuff keeps me up at night.....

 Applications to Regional Urban Sediment Management

The paradox of having it all

Integrated Approach to Sediment Management

NY/NJ Watershed: The R [urban] SM Perfect Storm

Regional (Urban) Sediment Management

The Perfect Storm:

2012 - 2022

Remediation / Restoration +

USACE Navigation dredging with placement (non- ocean placement material)

(1) Dewatering / Stabilization - Landfill (Haz/non-H)

(2) Treatment / Beneficial Use

Regional Sediment Management Integrated Approach

Application to Sustainable <u>Sediment</u> Management

Comprehensive (Integrated) approach for addressing the Iong-term management / conservation of sediments within a watershed in order to maintain current and future uses while promoting beneficial uses (as a resource).

To be in synch with addressing regional Environmental, Economic, Social and Political challenges...

David Moore, Shelly Anghera, Jack Word*, Matt Wartian and Kurt Frederick Weston Solutions, Inc. *Newfields Northwest, LLC. – Presented at SETAC, Milwaukee 2007

(modified by Stern)

Intergenerational Equity [Sustainability] Decision Making - Restoration

- Do not make decisions that have irreversible consequences
 - -Don't get over your head.....
- Do not make decisions that could seriously threaten the resource base over the long-term
 - -Don't mess up.....
- ✓ <u>Do not make decisions that could foreclose</u> <u>options for future generations to utilize resources</u>
 - Don't really, really mess up!! [sustainability]
 - Implications of long-term monitoring and site use
 - Effects of climate change adaptation (design)

Apply Integrated Management

- Environmentally efficient
- Economically affordable
- Socially acceptable
- Ensure human health and safety
- Must reduce as much as possible the environmental impacts of waste mgmt (long-term)
 - Energy consumption
 - Pollution of air, land and water and loss of amenity
 - Take it out of the system (treatment)
 - □ Reduce/extinguish liability
- Operate at a cost acceptable to private citizens, businesses, and government

Remediation of Sediments Integrated System Approaches

Integrate BMPs to drive sustainable solutions to reduce long-term impacts and *liability*

Multi-complex contaminants - Urban Environments (TCDD, PAHs, Pb, Hg, Cr, TBT....)

•	Environmental	Precision	Dredging
---	----------------------	------------------	-----------------

- Geophysical surveys debris fields
- Mechanical, Hydraulic
- Materials Handling (most critical step economics)
 - Pumping slurries
 - Dewatering (passive geotubes): mechanical (filter presses)
 - Transport / Carbon footprint consideration for LCA

Sediment Remediation Applications:

- Capping
 - Active/Reactive Core Mats specialized caps (Organoclay, Activated Carbon, Thin Layer Cap), <u>Polymeric Marine Mattress</u>
 - AquaBloktm, BioBloktm SediMitetm (delivery systems)
- ✓ Stabilization/Solidification + (ISCO) (portland cement) + (oxidation)
 - $-H_2O_2$, KMnO₄, NaS₂O₈

- ✓ Confined Disposal Facility (upland & nearshore)
- ✓ Confined Aquatic Disposal (aquatic)
 - Siting is becoming a challenge / aquatic real estate
- ✓ Containment Islands (near capacity / expand? \$\$\$\$)
- ✓ Landfills (significant transport Carbon footprint) / liability?
- ✓ Mine Reclamation
- ■Ex-situ / In-Situ Innovative Sediment Technologies
 - Thermal
 - Non-thermals
 - In-Situ Stabilization (cement injection) / caps
- □In / Ex-Situ Bioremediation
 - Mudflats ecosystem restoration
 - Space limitation
- Monitored Natural Attenuation/enhanced (eMNR)

INTEGRATE PHYSICAL INFRASTRUCTURE IN ALL ALTERNATIVES:

- **□Climate Change**
- **□**Hurricanes
- **□**Earthquakes

US Nationwide Tier 1 Sites – Probable Adverse Aquatic/Human Health Effects

8,348 sites

43% of sites surveyed

8.8 % of river reaches

Source: National Sediment Quality Survey (EPA, 2004)

<u>Long – Term Implementation / Monitoring</u>
Adaptive Management

[Urban] / Port Sediment Management

- Sustainability (long-term)
- Eco-psychology (Urban Sed. Mgmt.)
 - Behavioral understanding of moving forward
 - Open to Change
 - Urban City / Port Environment
 - Leadership
 - Education (K-12) / Stakeholder Outreach
 - Different brain wiring (political) short vs. long-term

can't see it

- Integrated Sediment Management
 - Hybrids Holistic Treatment Train Approaches
 - Multi Contaminants / Multi Media / Cultural Resources
 - Regional Sediment Management (watersheds/basins) SOURCE CONTROL
- Beneficial Use
 - Un-renewable resources (economic re-development)

complicated media

Competing / Integrated Uses of the Gowanus Canal, New York: Case Study

To Place on Superfund National Priority List or Not – <u>debate:</u>

- Superfund (State to Federal lead)
 - -10-11 years / \$500M+
- Water Resource Development Act + Superfund (NYC / Mayor Bloomburg)
 - 6 years (cost-share)(Great Lakes Legacy Act Model)
 - Federal/State/City PRPs
 - Economic Development and Revitalization
 - Source Control Combined Sewer Overflow abatement
- (Opinion): Debate was more political socio economic
 - To develop or not develop....

RSM Sediment Sustainability:

Historical – Economic Engine

Present

Linkage between sediment remediation / restoration and upland economic

DISCONNECT

development

TMDLs CSOs

Sponge Park – Gowanus Canal

Public open space that slows, absorbs and filters surface water runoff to remediate contaminated water, activate the private canal waterfront and revitalize the neighborhood.

BUSINESS SENSITIVE

direct, collect and absorb

excess SW runoff -

phytoremediation and

wetland habitat creation

Bionauticstm Bulk and Tiering System

Sediment Management Decision Making Tools

- Life-Cycle Assessment
 - Evaluating total effects a product has on the environment over its entire existence (production through disposal)
 - Energy (consumption) + resource use (un-renewable resources/beneficial use)
 - Transportation (carbon footprint)
 - Final disposition (landfill, CAD, CDF, capped site)
 - Applications of beneficial use
 - Climate change adaptation
 - Habitat and ecosystem recovery/restoration
 - treatment technologies + beneficial use, CDFs/CADs, capping, landfills etc.
 - » Short vs. long-term options (in it for the long-term)

Sediment Management Decision Making Tools

- SiteWise ™ Baseline LCA Assessment Tool (Battelle, Navy, USACE)/Microsoft Excel (not applied to sediments)
 - metrics: GHGs, energy usage, air pollutants (SO_x, NO_x), particulate matter, H₂0 usage and accident risk
 - Remedial Investigation, Remedial action construction/operations and longterm monitoring
 - Transportation/material production/equipment use/residual management
- Multi-Criteria Decision Analysis
 - (USACE ERDC: Linkov, Bates / NGI: Sparrevik, Oen
 - Supports selection of suitable sediment remediation alternatives
 - Environmental, technical, social and economics relative to the remedy
 - Probability and sensitivity analysis (stakeholders/risk perception)
 - » Critical in making decisions with imperfect information (time and \$\$)

Use of Innovative Sediment Management Programs and Technologies Positioning for the Future

Regional Processing
Beneficial Use
Sustainability

Sediment Treatability Treatment Train Development: (Ex/In-situ)

Ex-SituTreatment Technologies Tested USEPA/NJDOT Decontamination Programs (1995-2010)

- ✓ Sediment Washing *
- √Thermo-Chemical Rotary Kiln *
- ✓ Plasma-Arc Vitrification
- √ Base-Catalyzed Decomposition
- ✓ Rotary Kiln -Thermal Desorption
- √ Solvent Extraction
- √ Solidification/Stabilization with Oxidation *
- √ Fluidized Bed Reactor

^{*} Full - Commercial Scale

Ex-situ Technologies with Beneficial Use

- □ Cement-Lock tm Technology* ++ F
 - Commercialized by Volcano Partners LLC
 - Thermo-chemical rotary kiln (cement and WTE)
- □ BioGenesis tm Enterprises* ++ F
 - Sediment washing (soils, bricks, polymer coating)
- Upcycle / BayCycle Aggregates * ++
 - Existing Rotary Kiln (light-weight aggregate)
- Harbor Resource Environmental Group, Inc *
 - Oxidation/dewaterimg/Stabilization (structural fill)
- Westinghouse/The Solena Group + *
 - Plasma-arc vitrification (glass tiles / gasification biofuels / BA)
 - Full Scale F Pilot Scale *
 - ERDC Review ++

Montclair State University, NJ Manufactured Soil and EcoMelttm Sustainable Landscape Demonstration (2010)

Manufactured soil compared against residential/non-residential soil criteria

Treated Manufactured Soil / Constructiongrade Cement: MSU/Fall 2011

Meets NJ Residential Soil Criteria

30-40% replacement for Portland cement

To Place on Superfund National Priority List or Not – <u>debate:</u>

- Superfund (State to Federal lead)
 - -10-11 years / \$500M+
- Water Resource Development Act + Superfund (NYC / Mayor Bloomburg)
 - -6 years (cost-share)(Great Lakes Legacy Act Model)
 - Federal/State/City PRPs
 - Economic Development and Revitalization
 - Source Control Combined Sewer Overflow abatement
- (Opinion): Debate was more political socio economic
 - To develop or not develop....

Battelle The Business of Innovation

Accelerating Progress at Contaminated Sediment Sites: Moving from Guidance to Practice

Bridges, T.S., Nadeau, S.C and M. McCulloch (2011). SETAC on-line. *Integrated Environmental Assessment and Management*

- Development of detailed and explicit project vision & accompanying objectives
 - Achievable short-long term goals
 - Metrics of remedy success at beginning of project
 - Dynamic adjust
- Strategic engagement of stakeholders

 Optimization of risk reduction / risk management & remedy selection

Deliberate use of early action remedies (IRMs) to accelerate risk reduction (Bergen Capping Studies)

Systematic/sequential development of suite of actions applicable to ultimate remedy

Starting with Monitored Natural Recovery and adding engineering actions to meet objectives

- Incentive process that encourages and rewards risk reductions to industry
 - Don't sue...
- Pursuit of sediment remediation projects as public-private collaborative enterprises (cost share)
 - USEPA Legacy Act

USEPA Great Lakes Legacy Act Cost Share Model

- Goal: Accelerate the pace of sediment remediation at Areas of Concern (AOCs)
 - Federal Government Authorization (Act of Congress)
- Mechanism: Use partnerships as an innovative approach to conducting sediment remediation
- ✓ Cost Sharing: Requires a minimum 35% nonfederal cost share
 - Not been implemented anywhere outside the Great Lakes

Great Lakes Legacy Act Project Types

- Must be in U.S. Areas of Concern (AOCs) and:
 - 1) Implement a plan to remediate contaminated sediment (highest priority)
 - -2) Monitor or evaluate contaminated sediment
 - –3) Prevent further or renewed sediment contamination
 - 4) Habitat Restoration in conjunction with sediment remediation

USEPA Legacy Act Industry Project Cost Share (2011)

- DuPont Co.
- GenCorp Inc.
- Honeywell International Inc.
- Illinois Tool Works, Inc.
- United Technologies BP-Husky Refining
- Cleveland Illuminating Co.
- Mallinckrodt Inc
- Millenium Inorganic Chemicals
- Ohio Power
- Olin Corp
- Occidental Chemical
- RMI Titanium Co
- Sherwin Williams
- Union Carbide

- CBS Operations (Viacom Intl)
- Elkem Metals
- Perstorp Polyols, Inc.
- Chevron USA
- Sunoco, Inc
- Pilkington North America, Inc
- Allied Waste Industries, Inc.
- Phelps Dodge (Now Freeport-McMoRan)
- Cabot Corp
- Detrex Corp
- XIK Corp
- Consumers Energy
- Varta Microbattery, Inc.
- The Mosaic Co.

Legacy Act Regional Sediment Treatment Program (example)

- Partner with GLNPO (Legacy Act) to provide non-federal cost share (65-35%)
- Dredge, decontaminate, recycle to useful products instead of placement in CDF or landfill
- PROCESS AT CENTRAL LOCATION
 - Standardized materials handling approach
 - Combine several projects for sediment volume throughput: Regional facilities (Lake Michigan/Erie)
 - Improved efficiencies

Sustainable reclamation of a non-renewable resource

Long Term Disposal and Placement Options

CDFs nearing capacity

Landfills?

Long-term monitoring

LEGACY?

Summary:

- □[environmentalists] have become more equity conscious, and through their adoption of the sustainable growth logic of the appropriate technology movement, they have largely cast off changes of obstructionism
 - Cicin-Sain and Knecht (1998)
 - Integrated Coastal and Ocean Management
-Need to be open to new ideas behavioral (shift)
 - Innovation grinds to a halt (no intellectual motivation) if the most desired outcomes are long-term dumps or that clean-ups continue to take decades

- Don't believe when someone tells you "If it ain't broken don't fix it" translates globally
 - It probably is broken and you just don't quite yet know how to fix it.. stuck in the mud...
 - Impedes innovative technology development
- □ Move demonstrations to full-scale/commercial applications
- Application of Regional Sediment Management
 - Integrated solutions (play nice with each other)
 - Understand / apply sustainability component
 - Integrate Life Cycle Assessment MCDA / Sustainability / Environmental Cost Benefit of paying more in the short-term as it relates to long-term sustainable approaches
- Don't discount sediment treatment as too expensive Technologies over a decade that have stayed in the game have advanced through bench/pilot/full-scale programs with better environmental economic data
 - This has caught up (w/in magnitude) with other alternatives (LCA)

